exercise:C2ad1f21c9: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>n</math> be a positive integer, and assume that <math>j</math> is a positive integer not exceeding <math>n/2</math>. Show that in Theorem~, if one alternates the multiplications and divisions, then all of...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>n</math> be a positive integer, and assume that <math>j</math> is a positive integer not exceeding <math>n/2</math>.  Show that in [[guide:E54e650503#thm 3.7 |Theorem]],  if one alternates the multiplications and divisions, then all of the intermediate  values in
\newcommand{\NA}{{\rm NA}}
the calculation are integers. Show also that none of these intermediate  values exceed the final value.
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>n</math> be a positive integer, and assume that <math>j</math> is a
positive integer not exceeding <math>n/2</math>.  Show that in [[guide:E54e650503#thm 3.7 |Theorem~]],  if one
alternates the multiplications and divisions, then all of the intermediate  values in
the calculation are integers. Show also that none of these intermediate  values exceed
the final value.

Latest revision as of 23:14, 12 June 2024

Let [math]n[/math] be a positive integer, and assume that [math]j[/math] is a positive integer not exceeding [math]n/2[/math]. Show that in Theorem, if one alternates the multiplications and divisions, then all of the intermediate values in the calculation are integers. Show also that none of these intermediate values exceed the final value.