Revision as of 01:25, 24 November 2024 by Admin
BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
- Show directly that [math]\frac{2x-3}{(x-2)^2}[/math] can be written in the form [math]\frac{A}{x-2} + \frac{B}{(x-2)^2}[/math] by first writing [math]\frac{2x-3}{(x-2)^2} = \frac{2(x-2)+1}{(x-2)^2}[/math].
- Following the method in \ref{ex7.4.5a}, show that [math]\frac{ax+b}{(x-k)^2}[/math] can always be written [math]\frac{A}{x-k} + \frac{B}{(x-k)^2}[/math], where [math]A[/math] and [math]B[/math] are constants.
- Extend the result in (b) by factoring, completing the square, and dividing to show directly that
[[math]] \frac{ax^2+bx+c}{(x-k)^3} \: \mbox{can be written} \: \frac{A}{x-k}+\frac{B}{(x-k)^2}+\frac{C}{(x-k)^3} [[/math]]where [math]A[/math], [math]B[/math] and [math]C[/math] are constants.