Delta Method
The delta method is a result concerning the approximate probability distribution for a function of an asymptotically normal statistical estimator from knowledge of the limiting variance of that estimator.
Method
While the delta method generalizes easily to a multivariate setting, careful motivation of the technique is more easily demonstrated in univariate terms. Roughly, if there is a sequence of random variables [math]X_n[/math] satisfying
where [math]\theta[/math] and [math]\sigma^2[/math] are finite valued constants and [math]\xrightarrow{D}[/math] denotes convergence in distribution, then
for any function [math]g[/math] satisfying the property that [math]g'(\theta) [/math] exists and is non-zero valued.
The method extends to the multivariate case. By definition, a consistent estimator [math]B[/math] converges in probability to its true value [math]\beta[/math], and often a central limit theorem can be applied to obtain asymptotic normality:
where n is the number of observations and [math]\Sigma[/math] is a covariance matrix. The multivariate delta method yields the following asymptotic property of a function [math]h[/math] of the estimator [math]B[/math] under the assumption that the gradient [math]\nabla h[/math] is non-zero:
<proofs page = "guide_proofs:3285677816" section = "proof" label = "The Delta Method" />
References
- Wikipedia contributors. "Delta method". Wikipedia. Wikipedia. Retrieved 30 May 2019.