Revision as of 17:48, 9 May 2023 by Admin
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
May 09'23

Exercise

An insurance company sells two types of auto insurance policies: Basic and Deluxe. The time until the next Basic Policy claim is an exponential random variable with mean two days. The time until the next Deluxe Policy claim is an independent exponential random variable with mean three days. Calculate the probability that the next claim will be a Deluxe Policy claim.

  • 0.172
  • 0.223
  • 0.400
  • 0.487
  • 0.500

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

May 09'23

Solution: C

Let [math]T_1[/math] be the time until the next Basic Policy claim, and let [math]T_2[/math] be the time until the next Deluxe policy claim. Then the joint pdf of [math]T_1[/math] and [math]T_2[/math] is

[[math]] f(t_1,t_2) = \left( \frac{1}{2} e^{-t_1/2}\right) \left( \frac{1}{3}e^{-t_2/3}\right) = \frac{1}{6}e^{-t_1/2}e^{-t_2/3}, 0 \lt t_1 \lt \infty, 0 \lt t_2 \lt \infty [[/math]]

and we need to find

[[math]] \begin{align*} P[T_1 \lt T_2] = \int_0^{\infty}\int_0^{t_1} \frac{1}{6} e^{-t_1/2}e^{-t_2/3} dt_2dt_1 &= \int_0^{\infty} \left[ -1\frac{1}{2} e^{-t_1/2}e^{-t_2/3}\right ]_0^{t_1} dt_1 \\ &= \int_0^{\infty}[\frac{1}{2}e^{-t_1/2} - \frac{1}{2}e^{-t_1/2}e^{-t_1/3}] dt_1 \\ &= \int_0^{\infty} \left[ \frac{1}{2}e^{-t_1/2} - \frac{1}{2} e^{-5t_1/6}\right] dt_1\\ & = \left [ -e^{-t_1/2} + \frac{3}{5}e^{-5t_1/6}\right]_0^{\infty} \\ &= 1- \frac{3}{5} = \frac{2}{5} \\ & = 0.4 \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00