Revision as of 13:09, 18 March 2024 by Admin
Jun 01'22
Exercise
Two loss variables [math]L_1[/math] and [math]L_2[/math] have a strictly increasing continuous joint cumulative distribution [math]F(x,y)[/math]. Which of the following expressions represent the probability that both losses exceed their 95th percentile?
- [math]F(F_X^{-1}(0.95), F_Y^{-1}(0.95))[/math] with [math]F_X(x) = F(x,\infty)[/math] and [math]F_Y(y) = F(\infty, y)[/math]
- [math]F(F_X^{-1}(0.95), F_Y^{-1}(0.95)) - 0.9.[/math] with [math]F_X(x) = F(x,\infty)[/math] and [math]F_Y(y) = F(\infty, y)[/math]
- [math]F(F_X(0.95), F_Y(0.95)) - 0.9.[/math] with [math]F_X(x) = F(x,\infty)[/math] and [math]F_Y(y) = F(\infty, y)[/math]
- [math]0.05^2[/math]
- [math]F(F_X^{-1}(0.95), F_Y^{-1}(0.95)) - 0.9.[/math] with [math]F_X(x) = F(\infty, x)[/math] and [math]F_Y(y) = F(y, \infty)[/math]