Borel sets
Topologically, the Borel sets in a topological space are the [math]\sigma[/math]-Algebra generated by the open sets. One can build up the Borel sets from the open sets by iterating the operations of complementation and taking countable unions.
Let [math](E,\mathcal{O})[/math] be a topological space. Then [math]\sigma(\mathcal{O})[/math] is called the Borel [math]\sigma[/math]-Algebra of [math]E[/math] and is denoted by [math]\mathcal{B}(E)[/math]. Moreover, the elements of [math]\mathcal{B}(E)[/math] are called Borel sets.
Observe that if [math]E=\mathbb{R}[/math], then [math]\mathcal{B}(\mathbb{R})\not=\mathcal{P}(\mathbb{R})[/math]. That means that there exist subsets which are not Borel measurable.
Let [math](E,\mathcal{O})[/math] be a topological space with a countable basis of open sets [math]\{w_n\}_{n\in\N}[/math]. Then
Since [math]\{w_n\}_{n\in\N}\subset\mathcal{O}[/math], we get that [math]\sigma(\{w_n\}_{n\in\N})\subset\sigma(\mathcal{O})=\mathcal{B}(E)[/math]. Moreover, since every open set [math]O[/math] can be written as [math]O=\bigcup_{j\in J\subset \N}w_j[/math], we deduce that for all [math]O\in\mathcal{O}[/math] we get [math]O\in \sigma(\{ w_n\}_{n\in\N})[/math] and thus [math]\sigma(\mathcal{O})\subset \sigma(\{w_n\}_{n\in\N})[/math].
\label{rem1} An important observation is also that the [math]\sigma[/math]-Algebra generated by open sets equals the [math]\sigma[/math]-Algebra generated by closed sets of the form, that is, if we denote by [math]\mathcal{O}^C:=\{F\subset E\mid \text{$F$ is closed with respect to the topology $\mathcal{O}$}\}[/math],
\begin{proof}[Proof of Remark] We show the direction [math]\Longrightarrow[/math]. For [math]O\in\mathcal{O}[/math] set [math]F:=O^C[/math], which is closed, that is [math]F\in \mathcal{O}^C[/math]. The fact that [math]F[/math] is closed implies that [math]F\in \sigma(\{F\}_{F\in\mathcal{O}^C})[/math] and thus [math]F^C=O\in\sigma(\{ F\}_{F\in\mathcal{O}^C})[/math], because of the properties of a [math]\sigma[/math]-Algebra. Hence [math]\mathcal{O}\subset\sigma(\{ F\}_{F\in\mathcal{O}^C})[/math] and therefore [math]\sigma(\mathcal{O})\subset\sigma(\{ F\}_{F\in\mathcal{O}^C})[/math]. The other direction is similar, hence we leave it as an exercise. \end{proof}
\label{rem2} Consider the case [math]E=\mathbb{R}[/math]. Then we would get
\begin{proof}[Proof of Remark] Recall that [math]\mathbb{Q}[/math] is a dense subset of [math]\mathbb{R}[/math]. Therefore it follows that
is a countable basis of open sets in [math]\mathbb{R}[/math] and thus
Moreover, it is important to observe that [math](\alpha,\beta)=(\alpha,\infty)\cap[\beta,\infty)^C[/math] with
Therefore we get that [math](\alpha,\infty)\in\sigma(\{(\alpha,\infty)\}_{\alpha\in\Q})[/math] and thus [math](\alpha,\infty)\cap[\beta,\infty)^C\in\sigma(\{[\alpha,\infty)\}_{\alpha\in\Q})[/math]. It follows from the definition of the Borel [math]\sigma[/math]-Algebra that
which finally implies that [math]\sigma(\{[\alpha,\infty)\}_{\alpha\in\R})=\B(\R)[/math]. \end{proof}
General references
Moshayedi, Nima (2020). "Lectures on Probability Theory". arXiv:2010.16280 [math.PR].