Simple Functions
After we have developed the notion of a measurable map, we need to discuss a class of very powerful and, as the name points out, simple functions. The advantage of these type of functions are exactly the fact that they are simple to handle and moreover one can basically proof many things for measurable functions by proving it for simple functions and deduce the general case out of that. We will later see the advantage of them being dense in different spaces. Let us start with the definition of a simple function.
Let [math](E,\A)[/math] be a measurable space. A map [math]f:E\longrightarrow \R[/math] is called simple, if it is measurable and if it takes a finite number of values. Recall again that [math]\R[/math] is considered as a measurable space endowed with its Borel [math]\sigma[/math]-Algebra [math]\B(\R)[/math].
By definition, one can therefore write any simple function [math]f[/math] as
Note first that for all [math]x\in E[/math], we get that [math]f(x)\in\{\alpha_1,...,\alpha_k\}[/math], where the [math]\alpha_i[/math]'s are distinct if and only if [math]f^{-1}(\{\alpha_i\})=\{x\in E\mid f(x)=\alpha_i\}=A_i\in\A[/math], since [math]f[/math] is measurable. Hence we get that [math]A_i\cap A_j=\varnothing[/math] for [math]i\not=j[/math] and [math]\bigcup_{i=1}^kA_i=E[/math]. This representations is unique if the [math]\alpha_i's[/math] are distinct. We can write the canonical form therefore as
Let [math](E,\A)[/math] be a measurable space and let [math]f:E\longrightarrow \R[/math] be a measurable map. Then there exists a sequence of simple functions [math](f_n)_{n\in\N}[/math] such that for all [math]x\in E[/math] we get
- [math]f\geq 0[/math], we can choose an increasing [math]f_n\geq 1[/math] ([math]0\leq f_n\leq f_{n+1}[/math]).
- [math]f[/math] is bounded, [math]f_n[/math] can be chosen such that the convergence is uniformly, i.e.
[[math]] \sup_{x\in E}\vert f_n(x)-f(x)\vert\xrightarrow{n\to\infty}0. [[/math]]
Let us first assume that [math]f\geq 0[/math]. For [math]n\in\mathbb{N}[/math], we set
Thus we have [math]E_{n,k},E_{n,\infty}\in\mathcal{A}[/math]. Now define
and obtain that [math]f_n[/math] is simple by construction. For [math]x\in E_{n,k}[/math] we get
and if [math]x\in E_{n,\infty}[/math] we get
It follows that [math]0\leq f_n(x)\leq f_{n+1}(x)[/math] for all [math] x\in E[/math]. If furthermore [math]x\in \{f \lt n\}[/math], then
on [math]\left\{x\in E\mid f(x) \lt \infty\right\}=\bigcup_{k\geq 1}\{f \lt k\}[/math], and if [math]x\in \{f=\infty\}=\bigcap_{n\in\mathbb{N}}\{f\geq n\}[/math], then
If we have a function [math]f:E\longrightarrow \mathbb{R}^+[/math] and we assume that there exists aome [math]M\in(0,\infty)[/math] such that [math]0\leq f_n(x)\leq M[/math] for all [math]x\in E[/math], then for [math]n \gt M[/math] with [math]\{f\geq n\}=\varnothing[/math] it follows that for all [math]x\in E[/math] we get
which implies that
Let us emphasize the real case. If we have a function [math]f:E\longrightarrow \overline{\mathbb{R}}[/math] we have the decompositions as
If we now take [math]f_n^+[/math] and [math]f_n^-[/math] as constructed above we can obtain [math]f_n^+ \uparrow f^+[/math] and [math]f_n^- \uparrow f^-[/math] for [math]n\to\infty[/math]. Moreover, we notice that for [math]x\in E[/math] the sequences [math](f_n^+(x))_{n\in\N}[/math] and [math](f_n^-(x))_{n\in\N}[/math] cannot be simultaneously nonzero and therefore
General references
Moshayedi, Nima (2020). "Lectures on Probability Theory". arXiv:2010.16280 [math.PR].