Revision as of 00:05, 15 June 2024 by Admin
BBy Bot
Jun 09'24
Exercise
Let [math]X[/math] be a continuous random variable whose characteristic function [math]k_X(\tau)[/math] is
[[math]]
k_X(\tau) = e^{-|\tau|}, \qquad -\infty \lt \tau \lt +\infty\ .
[[/math]]
Show directly that the density [math]f_X[/math] of [math]X[/math] is
[[math]]
f_X(x) = \frac1{\pi(1 + x^2)}\ .
[[/math]]