Revision as of 22:01, 17 June 2024 by Admin
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
In the queueing problem of Exercise, let [math]S[/math] be the total service time required by a customer and [math]T[/math] the time between arrivals of the customers.
- Show that [math]P(S = j) = (1 - r)^{j - 1}r[/math] and [math]P(T = j) = (1 - p)^{j - 1}p[/math], for [math]j \gt 0[/math].
- Show that [math]E(S) = 1/r[/math] and [math]E(T) = 1/p[/math].
- Interpret the conditions [math]s \lt 1[/math], [math]s = 1[/math] and [math]s \gt 1[/math] in terms of these expected values.