Exercise
Consider a game played as follows: You are given a regular Markov chain with transition matrix
[math]\mat P[/math], fixed probability vector [math]\mat{w}[/math], and a payoff function [math]\mat f[/math] which assigns to each state [math]s_i[/math] an amount [math]f_i[/math] which may be positive or negative. Assume that [math]\mat {w}\mat {f} = 0[/math]. You watch this Markov chain as it evolves, and every time you are in state [math]s_i[/math] you receive an amount [math]f_i[/math]. Show that your expected winning after [math]n[/math] steps can be represented by a column vector [math]\mat{g}^{(n)}[/math], with
Show that as [math]n \to \infty[/math], [math]\mat {g}^{(n)} \to \mat {g}[/math] with [math]\mat {g} = \mat {Z} \mat {f}[/math].