Revision as of 02:20, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> For a certain experiment, the Poisson distribution with parameter <math>\lambda = m</math> has been assigned. Show that a most probable outcome for the experiment is the integer value <math>k</math> such that <math>m - 1 \leq k \leq m</math>. Un...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

For a certain experiment, the Poisson distribution with

parameter [math]\lambda = m[/math] has been assigned. Show that a most probable outcome for the experiment is the integer value [math]k[/math] such that [math]m - 1 \leq k \leq m[/math]. Under what conditions will there be two most probable values? Hint: Consider the ratio of successive probabilities.