Revision as of 02:20, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> In one of the first studies of the Poisson distribution, von Bortkiewicz<ref group="Notes" >L. von Bortkiewicz, ''Das Gesetz der Kleinen Zahlen'' (Leipzig: Teubner, 1898), p.\ 24.</ref> considered the frequency of deaths from kicks in the Prussi...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

In one of the first studies of the Poisson distribution, von

Bortkiewicz[Notes 1] considered the frequency of deaths from kicks in the Prussian army corps. From the study of 14 corps over a 20-year period, he obtained the data shown in Table.

Mule kicks.
Number of deaths Number of corps with [math]x[/math] deaths in a given year
0 144
1 91
2 32
3 11
4 2

Fit a Poisson distribution to this data and see if you think that the Poisson distribution is appropriate.

Notes

  1. L. von Bortkiewicz, Das Gesetz der Kleinen Zahlen (Leipzig: Teubner, 1898), p.\ 24.