Revision as of 02:24, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with <math>E(X) = \mu</math> and <math>V(X) = \sigma^2</math>. Show that the function <math>f(x)</math> defined by <math display="block"> f(x) = \sum_\omega (X(\omega) - x)^2 p(\omega) </math> has its mini...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]X[/math] be a random variable with [math]E(X) = \mu[/math] and [math]V(X) = \sigma^2[/math]. Show that the function [math]f(x)[/math] defined by

[[math]] f(x) = \sum_\omega (X(\omega) - x)^2 p(\omega) [[/math]]

has its minimum value when [math]x = \mu[/math].