Revision as of 02:24, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> If <math>X</math> and <math>Y</math> are any two random variables, then the '' covariance'' of <math>X</math> and <math>Y</math> is defined by {\rm Cov}<math>(X,Y) = E((X - E(X))(Y - E(Y)))</math>. Note that {\rm Cov}<math>(X,X) = V(X)</math>. S...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
If [math]X[/math] and [math]Y[/math] are any two random variables, then the
covariance of [math]X[/math] and [math]Y[/math] is defined by {\rm Cov}[math](X,Y) = E((X - E(X))(Y - E(Y)))[/math]. Note that {\rm Cov}[math](X,X) = V(X)[/math]. Show that, if [math]X[/math] and [math]Y[/math] are independent, then {\rm Cov}[math](X,Y) = 0[/math]; and show, by an example, that we can have {\rm Cov}[math](X,Y) = 0[/math] and [math]X[/math] and [math]Y[/math] not independent.