Revision as of 02:28, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be the random variable of Exercise \ref{exer 8.2.2}. <ul><li> Calculate the function <math>f(x) = P(|X - 10| \geq x)</math>. </li> <li> Now graph the function <math>f(x)</math>, and on the same axes, graph the Chebyshev function...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X[/math] be the random variable of Exercise \ref{exer
8.2.2}.
- Calculate the function [math]f(x) = P(|X - 10| \geq x)[/math].
- Now graph the function [math]f(x)[/math], and on the same axes, graph the Chebyshev function [math]g(x) = 100/(3x^2)[/math]. Show that [math]f(x) \leq g(x)[/math] for all [math]x \gt 0[/math], but that [math]g(x)[/math] is not a very good approximation for [math]f(x)[/math].