Revision as of 02:35, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> <ul><li> Show that for <math>m \ge 1</math>, <math display="block"> f_{2m} = u_{2m-2} - u_{2m}\ . </math> </li> <li> Using part (a), find a closed-form expression for the sum <math display="block"> f_2 + f_4 + \cdots + f_{2m}\ . </math> </l...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]
  • Show that for [math]m \ge 1[/math],
    [[math]] f_{2m} = u_{2m-2} - u_{2m}\ . [[/math]]
  • Using part (a), find a closed-form expression for the sum
    [[math]] f_2 + f_4 + \cdots + f_{2m}\ . [[/math]]
  • Using part (b), show that
    [[math]] \sum_{m = 1}^\infty f_{2m} = 1\ . [[/math]]
    (One can also obtain this statement from the fact that
    [[math]] F(x) = 1 - (1-x)^{1/2}\ .) [[/math]]
  • Using parts (a) and (b), show that the probability of no equalization in the first [math]2m[/math] outcomes equals the probability of an equalization at time [math]2m[/math].