Revision as of 02:35, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Show that if <math>\mat P</math> is the transition matrix of a regular Markov chain, and <math>\mat W</math> is the matrix each of whose rows is the fixed probability vector corresponding to <math>\mat {P}</math>, then <math>\mat {P}\mat {W} = \ma...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Show that if [math]\mat P[/math] is the transition matrix of a

regular Markov chain, and [math]\mat W[/math] is the matrix each of whose rows is the fixed probability vector corresponding to [math]\mat {P}[/math], then [math]\mat {P}\mat {W} = \mat {W}[/math], and [math]\mat {W}^k = \mat {W}[/math] for all positive integers [math]k[/math].