Revision as of 02:32, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Consider the game of tennis when ''deuce'' is reached. If a player wins the next point, he has ''advantage.'' On the following point, he either wins the game or the game returns to ''deuce.'' Assume that for any point, player A has probabilit...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Consider the game of tennis when deuce is

reached. If a player wins the next point, he has advantage. On the following point, he either wins the game or the game returns to deuce. Assume that for any point, player A has probability .6 of winning the point and player B has probability .4 of winning the point.

  • Set this up as a Markov chain with state 1: A wins; 2: B wins; 3: advantage A; 4: deuce; 5: advantage B.
  • Find the absorption probabilities.
  • At deuce, find the expected duration of the game and the probability that B will win.

\medbreak Exercises \ref{exer 11.2.15} and \ref{exer 11.2.16} concern the inheritance of color-blindness, which is a sex-linked characteristic. There is a pair of genes, g and G, of which the former tends to produce color-blindness, the latter normal vision. The G gene is dominant. But a man has only one gene, and if this is g, he is color-blind. A man inherits one of his mother's two genes, while a woman inherits one gene from each parent. Thus a man may be of type G or g, while a woman may be type GG or Gg or gg. We will study a process of inbreeding similar to that of Example by constructing a Markov chain.