Revision as of 02:32, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> (Roberts<ref group="Notes" >F. Roberts, ''Discrete Mathematical Models'' (Englewood Cliffs, NJ: Prentice Hall, 1976).</ref>) A city is divided into 3 areas 1, 2, and 3. It is estimated that amounts <math>u_1</math>, <math>u_2</math>, and <math>u...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

(Roberts[Notes 1]) A

city is divided into 3 areas 1, 2, and 3. It is estimated that amounts [math]u_1[/math], [math]u_2[/math], and [math]u_3[/math] of pollution are emitted each day from these three areas. A fraction [math]q_{ij}[/math] of the pollution from region [math]i[/math] ends up the next day at region [math]j[/math]. A fraction [math]q_i = 1 - \sum_j q_{ij} \gt 0[/math] goes into the atmosphere and escapes. Let [math]w_i^{(n)}[/math] be the amount of pollution in area [math]i[/math] after [math]n[/math] days.

  • Show that [math]\mat{w}^{(n)} = \mat{u} + \mat{u} \mat{Q} +\cdots + \mat{u}\mat{Q}^{n - 1}[/math].
  • Show that [math]\mat{w}^{(n)} \to \mat{w}[/math], and show how to compute \mat{w} from \mat{u}.
  • The government wants to limit pollution levels to a prescribed level by prescribing [math]\mat{w}.[/math] Show how to determine the levels of pollution [math]\mat{u}[/math] which would result in a prescribed limiting value [math]\mat{w}[/math].

Notes

  1. F. Roberts, Discrete Mathematical Models (Englewood Cliffs, NJ: Prentice Hall, 1976).