Exercise
Here is an elegant method due to Guibas and
Odlyzko[Notes 1] to obtain the expected time to reach a pattern, say HTH, for the first time. Let [math]f(n)[/math] be the number of sequences of length [math]n[/math] which do not have the pattern HTH. Let [math]f_p(n)[/math] be the number of sequences that have the pattern for the first time after [math]n[/math] tosses. To each element of [math]f(n)[/math], add the pattern HTH. Then divide the resulting sequences into three subsets: the set where HTH occurs for the first time at time [math]n + 1[/math] (for this, the original sequence must have ended with HT); the set where HTH occurs for the first time at time [math]n + 2[/math] (cannot happen for this pattern); and the set where the sequence HTH occurs for the first time at time [math]n + 3[/math] (the original sequence ended with anything except HT). Doing this, we have
Thus,
If [math]T[/math] is the time that the pattern occurs for the first time, this equality states that
Show that if you sum this equality over all [math]n[/math] you obtain
Show that for any integer-valued random variable
and conclude that [math]E(T) = 10[/math]. Note that this method of proof makes very clear that [math]E(T)[/math] is, in general, equal to the expected amount the casino pays out and avoids the martingale system theorem used by Li.
Notes