Revision as of 19:03, 24 June 2024 by Admin (Created page with "Let <math>X</math> be a random variable with <math>E(X) = \mu</math> and <math>Var(X) = \sigma^2</math>. Suppose <math display = "block">E[(X-c_0)^2] \leq E[(X-c)^2]</math> for all <math>c</math>. Determine <math>E[(X-c_0)^2] </math>.")
ABy Admin
Jun 24'24
Exercise
Let [math]X[/math] be a random variable with [math]E(X) = \mu[/math] and [math]Var(X) = \sigma^2[/math]. Suppose
[[math]]E[(X-c_0)^2] \leq E[(X-c)^2][[/math]]
for all [math]c[/math]. Determine [math]E[(X-c_0)^2] [/math].
ABy Admin
Jun 25'24
Solution: C
The function [math]e(c) = E[(X-c)^2] [/math] is a quadratic in [math]c[/math] therefore its minimum is achieved when its derivative equals zero. Take the derivative and set it to zero:
[[math]]
e'(c_0) =-2E[(X-c_0)] = 0 \implies c_0 = E[X].
[[/math]]
Hence the minimizer equals the expected value, and therefore the answer is automatically [math]\sigma^2[/math].