Revision as of 22:18, 2 May 2023 by Admin (Created page with "'''Solution: B''' Let <math>X</math> be the number of burglaries. Then, <math display = "block"> \begin{align*} \operatorname{E}(X | X \geq 2) = \frac{\sum_{x=2}^{\infty}xp(...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 02'23

Answer

Solution: B

Let [math]X[/math] be the number of burglaries. Then,

[[math]] \begin{align*} \operatorname{E}(X | X \geq 2) = \frac{\sum_{x=2}^{\infty}xp(x)}{1-p(0)-p(1)} &= \frac{\sum_{x=0}^{\infty}xp(x)-(0)p(0)-(1)p(1)}{1-p(0)-p(1)} \\ &= \frac{1-p(1)}{1-p(0)-p(1)} = \frac{1-e^{-1}}{1-e^{-1}-e^{-1}} = 2.39. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00