Revision as of 19:53, 5 May 2023 by Admin (Created page with "'''Solution: D''' The marginal distribution of <math>Y</math> is given by <math display = "block"> \begin{align*} f_2(y) = \int_0^y 6e^{-x}e^{-2y} dx &= 6 e^{-2y} \int_0^y...")
Exercise
May 05'23
Answer
Solution: D
The marginal distribution of [math]Y[/math] is given by
[[math]]
\begin{align*}
f_2(y) = \int_0^y 6e^{-x}e^{-2y} dx &= 6 e^{-2y} \int_0^y e^{-x} dx \\ &= -6e^{-2y}e^{-y} + 6e^{-2y}e^{-y} + 6e^{-2y} = 6e^{-2y}-6e^{-3y}, \, 0 \lt y \lt \infty.
\end{align*}
[[/math]]
Therefore,
[[math]]
\begin{align*}
\operatorname{E}(Y) = \int_0^{\infty}y f_2(y) dy = \int_0^{\infty}(6ye^{-2y} - 6ye^{-3y}) dy &= 6 \int_0^{\infty}ye^{-2y} dy - 6 \int_0^{\infty}ye^{-3y} dy
\\ &= \frac{6}{2} \int_0^{\infty} 2y e^{-2y} dy - \frac{6}{3} \int_0^{\infty}3y e^{-3y} dy.
\end{align*}
[[/math]]
But [math]\int_0^{\infty}2ye^{-2y} dy[/math] and [math]\int_0^{\infty}3ye^{-3y} dy[/math] are equivalent to the means of exponential randomvariables with parameters 1/2 and 1/3, respectively. In other words, [math]\int_0^{\infty}2ye^{-2y} dy = 1/2[/math] and [math]\int_0^{\infty}3ye^{-3y} dy = 1/3[/math]. We conclude that [math]\operatorname{E}(Y)[/math] equals
(6/2) (1/2) – (6/3) (1/3) = 3/2 – 2/3 =9/6 − 4/6 = 5/6 = 0.83.