Revision as of 13:46, 14 May 2023 by Admin (Created page with "'''Key: C''' <math display = "block"> \operatorname{E}[ X \wedge 500 ) = \exp(4.2 + \frac{1.1^2}{2}) \Phi(0.73) + 500(1-\Phi(1.83)) = 110.5 </math> Let S denote the aggreg...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 14'23

Answer

Key: C

[[math]] \operatorname{E}[ X \wedge 500 ) = \exp(4.2 + \frac{1.1^2}{2}) \Phi(0.73) + 500(1-\Phi(1.83)) = 110.5 [[/math]]

Let S denote the aggregate distribution of retained claims.

[[math]] \begin{aligned} &\operatorname{E}[ S ) = \operatorname{E}[ N ) \operatorname{E}[ X \wedge 500) = 20(110.5) = 2210 \\ &\operatorname{E}[ S ) = \operatorname{E}[ N )\operatorname{E}[ X \wedge 500) + \operatorname{E}[ ( X \wedge 500)^ 2 )\operatorname{E}[ N ) = 20(26,189) = 523, 780 \end{aligned} [[/math]]

The 90th percentile of [math]S[/math] is [math]2210 + 1.282 \sqrt{523,780} = 3137.82.[/math]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00