Revision as of 13:46, 14 May 2023 by Admin (Created page with "'''Key: C''' <math display = "block"> \operatorname{E}[ X \wedge 500 ) = \exp(4.2 + \frac{1.1^2}{2}) \Phi(0.73) + 500(1-\Phi(1.83)) = 110.5 </math> Let S denote the aggreg...")
Exercise
ABy Admin
May 14'23
Answer
Key: C
[[math]]
\operatorname{E}[ X \wedge 500 ) = \exp(4.2 + \frac{1.1^2}{2}) \Phi(0.73) + 500(1-\Phi(1.83)) = 110.5
[[/math]]
Let S denote the aggregate distribution of retained claims.
[[math]]
\begin{aligned}
&\operatorname{E}[ S ) = \operatorname{E}[ N ) \operatorname{E}[ X \wedge 500) = 20(110.5) = 2210 \\
&\operatorname{E}[ S ) = \operatorname{E}[ N )\operatorname{E}[ X \wedge 500) + \operatorname{E}[ ( X \wedge 500)^ 2 )\operatorname{E}[ N ) = 20(26,189) = 523, 780
\end{aligned}
[[/math]]
The 90th percentile of [math]S[/math] is [math]2210 + 1.282 \sqrt{523,780} = 3137.82.[/math]