Revision as of 00:45, 16 January 2024 by Admin (Created page with "A life is subject to the following 3 -year select and ultimate table: {| class="table" ! <math>[x]</math> !! <math>\ell_{[x]}</math> !! <math>\ell_{[x]+1}</math> !! <math>\ell_{[x]+2}</math> !! <math>\ell_{x+3}</math> !! <math>x+3</math> |- | 55 || 10,000 || 9,493 || 8,533 || 7,664 || 58 |- | 56 || 8,547 || 8,028 || 6,889 || 5,630 || 59 |- | 57 || 7,011 || 6,443 || 5,395 || 3,904 || 60 |- | 58 || 5,853 || 4,846 || 3,548 || 2,210 || 61 |} You are also given: (i) <math>...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jan 16'24

Exercise

A life is subject to the following 3 -year select and ultimate table:

[math][x][/math] [math]\ell_{[x]}[/math] [math]\ell_{[x]+1}[/math] [math]\ell_{[x]+2}[/math] [math]\ell_{x+3}[/math] [math]x+3[/math]
55 10,000 9,493 8,533 7,664 58
56 8,547 8,028 6,889 5,630 59
57 7,011 6,443 5,395 3,904 60
58 5,853 4,846 3,548 2,210 61

You are also given:

(i) [math]e_{60}=1[/math]

(ii) Deaths are uniformly distributed over each year of age

Calculate [math]\stackrel{\circ}{e}_{[58]+2}[/math].

  • 1.5
  • 1.6
  • 1.7
  • 1.8
  • 1.9
Jan 16'24

Answer: B

[[math]] \stackrel{\circ}{e}_{[58]+2}=e_{[58]+2}+0.5 [[/math]]


[[math]]e_{[58]+2}=p_{[58]+2}\left(1+e_{61}\right)=p_{[58]+2}\left[1+\frac{e_{60}}{p_{60}}-1\right][[/math]]

[[math]]=\frac{l_{61}}{l_{[58]+2}} \times \frac{e_{60}}{p_{60}}=\frac{2210}{3548} \times \frac{1}{(2210 / 3904)}=\frac{3904}{3549}=1.100338[[/math]]

[[math]]\stackrel{\circ}{e}_{[58]+2}=1.100338+0.5=1.6[[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00