Revision as of 02:12, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Assume that the probability of a “success” on a single experiment with <math>n</math> outcomes is <math>1/n</math>. Let <math>m</math> be the number of experiments necessary to make it a favorable bet that at least one success will occur (see...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Assume that the probability of a “success” on a single experiment with [math]n[/math] outcomes is [math]1/n[/math]. Let [math]m[/math] be the number of experiments necessary to make it a favorable bet that at least one success will occur (see [[guide:4f3a4e96c3#sec 1.1 |Exercise.]]).
- Show that the probability that, in [math]m[/math] trials, there are no successes is [math](1 - 1/n)^m[/math].
- (de Moivre) Show that if [math]m = n \log 2[/math] then
[[math]] \lim_{n \to \infty} \left(1 - \frac1n \right)^m = \frac12\ . [[/math]]Hint:[[math]] \lim_{n \to \infty} \left(1 - \frac1n \right)^n = e^{-1}\ . [[/math]]Hence for large [math]n[/math] we should choose [math]m[/math] to be about [math]n \log 2[/math].
- Would DeMoivre have been led to the correct answer for de Méré's two bets if he had used his approximation?