Revision as of 02:14, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Consider the problem of finding the probability of more than one coincidence of birthdays in a group of <math>n</math> people. These include, for example, three people with the same birthday, or two pairs of people with the same birthday, or larg...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Consider the problem of finding the probability of more than

one coincidence of birthdays in a group of [math]n[/math] people. These include, for example, three people with the same birthday, or two pairs of people with the same birthday, or larger coincidences. Show how you could compute this probability, and write a computer program to carry out this computation. Use your program to find the smallest number of people for which it would be a favorable bet that there would be more than one coincidence of birthdays.