Revision as of 02:16, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>n</math> be a positive integer, and assume that <math>j</math> is a positive integer not exceeding <math>n/2</math>. Show that in Theorem~, if one alternates the multiplications and divisions, then all of...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]n[/math] be a positive integer, and assume that [math]j[/math] is a

positive integer not exceeding [math]n/2[/math]. Show that in Theorem~, if one alternates the multiplications and divisions, then all of the intermediate values in the calculation are integers. Show also that none of these intermediate values exceed the final value.