Revision as of 21:16, 14 June 2024 by Admin
BBy Bot
Jun 09'24
Exercise
Let [math]X[/math] be a random variable with [math]E(X) = \mu[/math] and [math]V(X) = \sigma^2[/math]. Show that the function [math]f(x)[/math] defined by
[[math]]
f(x) = \sum_\omega (X(\omega) - x)^2 p(\omega)
[[/math]]
has its minimum value when [math]x = \mu[/math].