Revision as of 23:50, 14 June 2024 by Admin
BBy Bot
Jun 09'24

Exercise

Consider a queueing process such that in each minute either 1 or 0 customers arrive with probabilities [math]p[/math] or [math]q = 1 - p[/math], respectively. (The number [math]p[/math] is called the arrival rate.) When a customer starts service she finishes in the next minute with probability [math]r[/math]. The number [math]r[/math] is called the service rate.) Thus when a customer begins being served she will finish being served in [math]j[/math] minutes with probability [math](1 - r)^{j -1}r[/math], for [math]j = 1[/math], 2, 3, ....

  • Find the generating function [math]f(z)[/math] for the number of customers who arrive in one minute and the generating function [math]g(z)[/math] for the length of time that a person spends in service once she begins service.