Revision as of 00:23, 15 June 2024 by Admin
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

In Exercise Exercise, we assumed that every man has a son. Assume instead that the probability that a man has at least one son is .8. Form a Markov chain with four states. If a man has a son, the probability that this son is in a particular profession is the same as in Exercise. If there is no son, the process moves to state four which represents families whose male line has died out. Find the matrix of transition probabilities and find the probability that a randomly chosen grandson of an unskilled laborer is a professional man.