Revision as of 00:32, 25 June 2024 by Admin (Created page with "'''Solution: B''' We have <math display = "block">P(X=i) = \frac{i}{\sum_{i=1}^6 i } = \frac{i}{21}</math>, <math display = "block"> E[X] = \frac{1}{21}\sum_{i=1}^6 i^2 = \frac{91}{21} </math> and <math display = "block"> \operatorname{E}[X^2] = \frac{1}{21}\sum_{i=1}^6 i^3 = 21. </math> Hence the variance of <math>X</math> equals 21 - (91/21)<sup>2</sup> = 2.22.")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jun 25'24

Answer

Solution: B

We have

[[math]]P(X=i) = \frac{i}{\sum_{i=1}^6 i } = \frac{i}{21}[[/math]]

,

[[math]] E[X] = \frac{1}{21}\sum_{i=1}^6 i^2 = \frac{91}{21} [[/math]]

and

[[math]] \operatorname{E}[X^2] = \frac{1}{21}\sum_{i=1}^6 i^3 = 21. [[/math]]

Hence the variance of [math]X[/math] equals 21 - (91/21)2 = 2.22.

00