Revision as of 01:12, 25 June 2024 by Admin
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Jun 24'24

Exercise

Let [math]X[/math] and [math]Y[/math] be two random variables defined on the finite sample space [math]\Omega[/math]. Assume that [math]X[/math], [math]Y[/math], [math]X + Y[/math], and [math]X - Y[/math] all have the same distribution. Determine [math]P(X = Y = 0) [/math].

  • 0
  • 0.2
  • 0.5
  • 0.8
  • 1


References

Doyle, Peter G. (2006). "Grinstead and Snell's Introduction to Probability" (PDF). Retrieved June 6, 2024.

ABy Admin
Jun 25'24

Solution: E

We have

[[math]] E((X-Y)^2]=E[X^2] + E[Y^2] - 2E[XY]=E((X+Y)^2] = E[X^2] + E[Y^2] + 2E[XY]. [[/math]]

Hence [math]E[XY] = 0 [/math]. Then we also have

[[math]] E[X^2] = E[(X-Y)^2] = E[X^2] + E[Y^2] = 2E[X^2]. [[/math]]

Hence [math]E[X^2] = 0 [/math] which means that [math]P(X=0) = 1 [/math].

00