Revision as of 02:52, 27 June 2024 by Admin (Created page with "'''Solution: C''' Let <math>n</math> be the number of members. We know that the number of members that show up, say <math>N</math>, is approximately normally distributed with mean <math>np</math> and variance <math>np(1-p)</math>. From the exercise, we know that <math display = "block"> P( N \geq 108 ) \approx 0.025, \, P( N \leq 72) \approx 0.025 </math> or <math display = "block"> P(Z \geq \frac{108-np}{\sqrt{np(1-p)}}) \approx 0.025, \, P(Z \leq \frac{72-np}{\s...")
Exercise
Jun 27'24
Answer
Solution: C
Let [math]n[/math] be the number of members. We know that the number of members that show up, say [math]N[/math], is approximately normally distributed with mean [math]np[/math] and variance [math]np(1-p)[/math]. From the exercise, we know that
[[math]]
P( N \geq 108 ) \approx 0.025, \, P( N \leq 72) \approx 0.025
[[/math]]
or
[[math]]
P(Z \geq \frac{108-np}{\sqrt{np(1-p)}}) \approx 0.025, \, P(Z \leq \frac{72-np}{\sqrt{np(1-p)}}) \approx 0.025
[[/math]]
with [math]Z [/math] a standard normal variable. This gives:
[[math]]
\frac{108-\mu}{\sigma} \approx 1.96, \frac{72-\mu}{\sigma} \approx -1.96
[[/math]]
with [math]\mu = np [/math] and [math]\sigma = \sqrt{np(1-p)}[/math].
We have
[[math]]
\frac{108-\mu}{72-\mu} = -1 \implies \mu = np = 90.
[[/math]]
And then we have
[[math]]
\frac{18}{\sigma} = 1.96 \implies \sigma = \sqrt{np(1-p)} = \sqrt{90(1-p)} = 9.1837
[[/math]]
This immediately gives [math]p = 0.06289 [/math].