Revision as of 00:47, 28 June 2024 by Admin (Created page with "Let <math>X</math> and <math>Y</math> be independent random variables with uniform density functions on <math>[0,1]</math>. Find <math>E(|X - Y|)</math>. '''References''' {{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}}")
Jun 28'24
Exercise
Let [math]X[/math] and [math]Y[/math] be independent random variables with uniform density functions on [math][0,1][/math]. Find [math]E(|X - Y|)[/math].
References
Doyle, Peter G. (2006). "Grinstead and Snell's Introduction to Probability" (PDF). Retrieved June 6, 2024.
Jun 28'24
Solution: B
We condition on [math]Y=y[/math] then the expected value of [math]|X-y|[/math] equals
[[math]]
\int_{0}^y y-x \, dx + \int_{y}^1 x-y \, dx = \int_{0}^{y} w \, dw + \int_{0}^{1-y} w \, dw = \frac{y^2}{2} + \frac{(1-y)^2}{2}.
[[/math]]
Hence the expected value of |X-Y| equals
[[math]]
\int_{0}^1 \frac{y^2}{2} + \frac{(1-y)^2}{2} \, dy = 2\int_{0}^1 \frac{y^2}{2} dy = \frac{1}{3}.
[[/math]]