Revision as of 01:11, 28 June 2024 by Admin (Created page with "'''Solution: B''' We condition on <math>Y=y</math> then the expected value of <math>|X-y|</math> equals <math display = "block"> \int_{0}^y y-x \, dx + \int_{y}^1 x-y \, dx = \int_{0}^{y} w \, dw + \int_{0}^{1-y} w \, dw = \frac{y^2}{2} + \frac{(1-y)^2}{2}. </math> Hence the expected value of |X-Y| equals <math display ="block"> \int_{0}^1 \frac{y^2}{2} + \frac{(1-y)^2}{2} \, dy = 2\int_{0}^1 \frac{y^2}{2} dy = \frac{1}{3}. </math>")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Jun 28'24

Answer

Solution: B

We condition on [math]Y=y[/math] then the expected value of [math]|X-y|[/math] equals

[[math]] \int_{0}^y y-x \, dx + \int_{y}^1 x-y \, dx = \int_{0}^{y} w \, dw + \int_{0}^{1-y} w \, dw = \frac{y^2}{2} + \frac{(1-y)^2}{2}. [[/math]]

Hence the expected value of |X-Y| equals

[[math]] \int_{0}^1 \frac{y^2}{2} + \frac{(1-y)^2}{2} \, dy = 2\int_{0}^1 \frac{y^2}{2} dy = \frac{1}{3}. [[/math]]

00