Revision as of 00:36, 28 June 2024 by Admin
ABy Admin
Jun 28'24
Exercise
Let [math]X[/math] and [math]Y[/math] be independent random variables with uniform density functions on [math][0,1][/math]. Find [math]E((X + Y)^2)[/math].
- 2/3
- 3/4
- 5/6
- 11/12
- 1
References
Doyle, Peter G. (2006). "Grinstead and Snell's Introduction to Probability" (PDF). Retrieved June 6, 2024.
ABy Admin
Jun 28'24
Solution: D
We have
[[math]]
\begin{aligned}
E((X+Y)^2) = E(X^2) + 2E(XY) + E(Y^2) &= 2E(X^2) + 2E(X)^2 \\ &= \frac{2}{3} + \frac{1}{2} \\
&= \frac{7}{6}
\end{aligned}
[[/math]]