Revision as of 22:58, 28 June 2024 by Admin (Created page with "'''Solution: D''' We have <math display = "block"> P(|U-1/2| \leq y) = P(U \in (1/2-y, 1/2 + y) = \begin{cases} 2y, \, 0 \leq y \leq 1/2 \\ 1, \, y > 1/2 \\ 0 \,\, \textrm{Otherwise} \end{cases} </math> Taking the derivative of the distribution above, we obtain the density <math display = "block"> f(y) = \begin{cases} 2, \, 0 \leq y \leq 1/2 \\ 0 \,\, \textrm{Otherwise} \end{cases} </math>")
Exercise
ABy Admin
Jun 28'24
Answer
Solution: D
We have
[[math]]
P(|U-1/2| \leq y) = P(U \in (1/2-y, 1/2 + y) = \begin{cases} 2y, \, 0 \leq y \leq 1/2 \\ 1, \, y \gt 1/2 \\ 0 \,\, \textrm{Otherwise} \end{cases}
[[/math]]
Taking the derivative of the distribution above, we obtain the density
[[math]]
f(y) = \begin{cases} 2, \, 0 \leq y \leq 1/2 \\ 0 \,\, \textrm{Otherwise} \end{cases}
[[/math]]