Revision as of 23:08, 2 November 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Nov 03'24

Exercise

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Describe and sketch the graph of each of the following equations. If the graph is a circle, give its center and focus. If the graph is a parabola, give its focus, directrix, vertex, and axis. If the graph is an ellipse, give its center, foci, directrices, eccentricity, and length of major and minor axes. If the graph is an hyperbola, give its center, foci, directrices, eccentricity, asymptotes, vertices, and length of transverse axis.

  • [math]x^2 + y^2 + 6x + 4y = 12[/math]
  • [math]x^2 + 4y^2 + 6x + 4y + 6 = 0[/math]
  • [math]x^2 + 6x + 4y + 2 = 0[/math]
  • [math]x^2 - 4y^2 + 6x + 4y + 4 = 0[/math]
  • [math]4y^2 + 6x + 4y + 13 = 0[/math]
  • [math]xy + 6x + 4y = 3[/math]
  • [math]3x^2 + 3y^2 + 6x - 18y = 162[/math]
  • [math]4y^2 + x^2 + 6x + 4y = 11[/math]
  • [math]y^2 = 9x^2 + 2y + 8[/math]
  • [math]y^2 = 2y -9x^2 + 8[/math]