Revision as of 23:16, 2 November 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Nov 03'24

Exercise

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Find the particular solution [math]y[/math] of each of the following differential equations such that [math]y[/math] and [math]\dydx[/math] have the prescribed values when [math]x=0[/math].

  • [math]\deriv2y + 4\dydx + 3y = 0[/math], \quad [math]y=3[/math] and [math]\dydx=-5[/math] when [math]x=0[/math].
  • [math]25\deriv2y + 10\dydx + y = 0[/math], \quad [math]y=1[/math] and [math]\dydx = \frac{14}5[/math] when [math]x=0[/math].
  • [math]\deriv2y + 3\dydx = 0[/math], \quad [math]y=3[/math] and [math]\dydx = 6[/math] when [math]x=0[/math].
  • [math]\deriv2y + 2\dydx + 2y = 0[/math], \quad [math]y=5[/math] and [math]\dydx = -5[/math] when [math]x=0[/math].
  • [math]y^{\prime\prime} + 3y^\prime + 5y = 0[/math], \quad [math]y(0) = 2[/math] and [math]y^\prime(0) = 6[/math].