Revision as of 13:30, 28 November 2024 by Admin
Exercise
Jun 28'24
Answer
Solution: E
The expected number of pennies in a single roll equals [math]\mu = 49.8 [/math] and the variance equals [math]\sigma^2 = 0.36 [/math]. In particular, the net loss for [math]n[/math] rolls is approximately normally distributed with mean [math]0.2n[/math] and variance [math]n\sigma^2[/math]. Hence the probability of a net loss equals
[[math]]P(Z \geq \frac{-0.2n}{\sigma \sqrt{n}}) = P(Z \geq \frac{-\sqrt{n}}{3})[[/math]]
where [math]Z[/math] is a standard normal variable. The 1th percentile for a standard normal equals -2.326, hence we need
[[math]]
\frac{\sqrt{n}}{3} \geq 2.326 \implies n \geq 48.69
[[/math]]