Revision as of 22:37, 29 April 2023 by Admin (Created page with "A health insurer sells policies to residents of territory X and territory Y. Past claims experience indicates the following: #20% of the total policyholders from territory X...")
ABy Admin
Apr 29'23
Exercise
A health insurer sells policies to residents of territory X and territory Y. Past claims experience indicates the following:
- 20% of the total policyholders from territory X and territory Y combined filed no claims.
- 15% of the policyholders from territory X filed no claims.
- 40% of the policyholders from territory Y filed no claims.
Calculate the probability that a randomly selected policyholder was a resident of territory X, given that the policyholder filed no claims.
- 0.09
- 0.27
- 0.50
- 0.60
- 0.80
ABy Admin
Apr 30'23
Solution: D
Define the following 3 events:
A: policyholder is in territory A
B: policyholder is in territory. B
N: policyholder does not file claim.
Then using Bayes Theorem, we want
[[math]]
\operatorname{P}(A | N) = \frac{\operatorname{P}( A) \operatorname{P}( N | A)}{\operatorname{P}( A) \operatorname{P}( N | A) + \operatorname{P}( B) \operatorname{P}( N | B)} = \frac{\operatorname{P}( A) [ 0.15]}{\operatorname{P}( A) [ 0.15] + \operatorname{P}( B) [ 0.40]}
[[/math]]
Now let [math]\operatorname{P}( A) = p[/math] . Then [math]\operatorname{P}( B) = 1 − p[/math] . To find [math]p[/math], note
[[math]]
\begin{align*}
0.2 &= \operatorname{P}( N ) = \operatorname{P}( A ∩ N ) + \operatorname{P}( B ∩ N ) = \operatorname{P}( A) \operatorname{P}( N | A) + \operatorname{P}( B) \operatorname{P}( N | B) \\
&=( p )(0.15) + (1 − p )(0.4) = 0.4 − 0.25 p.
\end{align*}
[[/math]]
Thus [math]0.25p = 0.2[/math], and [math]p = \frac{0.2}{0.25} = 0.8 [/math]. So
[[math]]
\operatorname{P}(A | N) = \frac{(0.8)(0.15)}{( 0.8)( 0.15) + ( 0.2 )( 0.4 )} = \frac{0.12}{0.20} = 0.6.
[[/math]]