Revision as of 01:06, 30 April 2023 by Admin (Created page with "Let A, B, and C be events such that <math>\operatorname{P}[A] = 0.2</math>, <math>\operatorname{P}[B] = 0.1 </math>, and <math>\operatorname{P}[C] = 0.3 </math>. The events A...")
Apr 30'23
Exercise
Let A, B, and C be events such that [math]\operatorname{P}[A] = 0.2[/math], [math]\operatorname{P}[B] = 0.1 [/math], and [math]\operatorname{P}[C] = 0.3 [/math]. The events A and B are independent, the events B and C are independent, and the events A and C are mutually exclusive.
Calculate [math]\operatorname{P}[A \cup B \cup C] . [/math]
- 0.496
- 0.540
- 0.544
- 0.550
- 0.600
Apr 30'23
Solution: D
[[math]]
\begin{align*}
\operatorname{P}[ A ∪ B ∪ C ] &= \operatorname{P}[ A] + \operatorname{P}[ B] + \operatorname{P}[C ] − \operatorname{P}[ A ∩ B] − \operatorname{P}[ A ∩ C ] − \operatorname{P}[ B ∩ C ] + \operatorname{P}[ A ∩ B ∩ C ]\\
&= 0.2 + 0.1 + 0.3 − 0.2(0.1) − 0 − 0.1(0.3) + 0 \\
&= 0.55.
\end{align*}
[[/math]]