Revision as of 18:31, 1 May 2023 by Admin (Created page with "The warranty on a machine specifies that it will be replaced at failure or age 4, whichever occurs first. The machine’s age at failure, <math>X</math>, has density function...")
ABy Admin
May 01'23
Exercise
The warranty on a machine specifies that it will be replaced at failure or age 4, whichever occurs first. The machine’s age at failure, [math]X[/math], has density function
[[math]]
f(x) = \begin{cases}
\frac{1}{5}, \, 0\lt x \lt 5 \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
Let [math]Y[/math] be the age of the machine at the time of replacement. Calculate the variance of [math]Y[/math].
- 1.3
- 1.4
- 1.7
- 2.1
- 7.5
ABy Admin
May 01'23
Solution: C
Note
[[math]]
Y = \begin{cases}
X, \quad 0 \leq X \leq 4 \\
4, \quad 4 \lt X \leq 5
\end{cases}
[[/math]]
Therefore,
[[math]]
\begin{align*}
\operatorname{E}[Y] = \int_0^4 \frac{1}{5} x dx + \int_4^5 \frac{4}{5} dx &= \frac{1}{10} x^2 \Big |_0^4 + \frac{4}{5} x \Big |_4^5 \\
&= \frac{16}{10} + \frac{20}{5} - \frac{16}{5} \\ &= \frac{8}{5} + \frac{4}{5} = \frac{12}{5} \\
&= \frac{112}{15}
\end{align*}
[[/math]]
[[math]]
\operatorname{Var}[Y] = \operatorname{E}[Y^2] - (\operatorname{E}[Y])^2 = \frac{112}{15} - \left( \frac{12}{5} \right)^2 = 1.707.
[[/math]]