Revision as of 18:52, 1 May 2023 by Admin (Created page with "'''Solution: C''' The conditional variance is <math display = "block"> \begin{align*} \operatorname{Var}( X | X \geq 10) &= \operatorname{E} ( X^2 | X ≥ 10) − \operato...")
Exercise
ABy Admin
May 01'23
Answer
Solution: C
The conditional variance is
[[math]]
\begin{align*}
\operatorname{Var}( X | X \geq 10) &= \operatorname{E} ( X^2 | X ≥ 10) − \operatorname{E} ( X | X ≥ 10)^2 \\
&= \frac{\int_{10}^{\infty} x^2(0.2)e^{-0.2(x-5)} dx}{\int_{10}^{\infty} 0.2 e^{-0.2(x-5)} dx} - \left [\frac{\int_{10}^{\infty} x(0.2)e^{-0.2(x-5)} dx}{\int_{10}^{\infty} 0.2 e^{-0.2(x-5)} dx} \right ]^2
\end{align*}
[[/math]]
Performing integration (using integration by parts) produces the answer of 25. An alternative solution is to first determine the density function for the conditional distribution. It is
[[math]]
f(y) = \frac{0.2e^{-0.2(y-5)}}{\int_{10}^{\infty} 0.2 e^{-0.2(x-5)} dx} = \frac{0.2e^{-0.2(y-5)}}{-e^{-0.2(x-5)} \Big |_{10}^{\infty}} = \frac{0.2e^{-0.2(y-5)}}{e^{-0.2(5)}} = 0.2 e^{-0.2(y-10)}, y \gt 10.
[[/math]]
Then note that [math]Y – 10 [/math] has an exponential distraction with mean 5. Subtracting a constant does not change the variance, so the variance of [math]Y[/math] is also 25.