Revision as of 12:59, 2 May 2023 by Admin (Created page with "An insurance policy reimburses dental expense, <math>X</math>, up to a maximum benefit of 250. The probability density function for <math>X</math> is: <math display = "block"...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
May 02'23

Exercise

An insurance policy reimburses dental expense, [math]X[/math], up to a maximum benefit of 250. The probability density function for [math]X[/math] is:

[[math]] f(x) = \begin{cases} ce^{-0.004x}, \, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]

where [math]c[/math] is a constant. Calculate the median benefit for this policy.

  • 161
  • 165
  • 173
  • 182
  • 250

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
May 02'23

Solution: C

Note that [math]X[/math] has an exponential distribution. Therefore, c = 0.004 . Now let [math]Y[/math] denote the claim benefits paid. Then

[[math]] Y = \begin{cases} x, \quad x \leq 250 \\ 250, \quad x \geq 250 \end{cases} [[/math]]

and we want to find [math]m[/math] such that 0.50 equals

[[math]] \int_0^{\infty} 0.004e^{-0.004x} dx = -e^{-0.004x} \Big |_0^m = 1- e^{-0.004m}. [[/math]]

This condition implies

[[math]] e^{-0.004m} = 0.5 \Rightarrow m = 250 \ln(2) = 173.29. [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00