Revision as of 12:59, 2 May 2023 by Admin (Created page with "An insurance policy reimburses dental expense, <math>X</math>, up to a maximum benefit of 250. The probability density function for <math>X</math> is: <math display = "block"...")
ABy Admin
May 02'23
Exercise
An insurance policy reimburses dental expense, [math]X[/math], up to a maximum benefit of 250. The probability density function for [math]X[/math] is:
[[math]]
f(x) = \begin{cases}
ce^{-0.004x}, \, x \gt 0 \\
0, \, \textrm{Otherwise}
\end{cases}
[[/math]]
where [math]c[/math] is a constant. Calculate the median benefit for this policy.
- 161
- 165
- 173
- 182
- 250
ABy Admin
May 02'23
Solution: C
Note that [math]X[/math] has an exponential distribution. Therefore, c = 0.004 . Now let [math]Y[/math] denote the claim benefits paid. Then
[[math]]
Y = \begin{cases}
x, \quad x \leq 250 \\
250, \quad x \geq 250
\end{cases}
[[/math]]
and we want to find [math]m[/math] such that 0.50 equals
[[math]]
\int_0^{\infty} 0.004e^{-0.004x} dx = -e^{-0.004x} \Big |_0^m = 1- e^{-0.004m}.
[[/math]]
This condition implies
[[math]]
e^{-0.004m} = 0.5 \Rightarrow m = 250 \ln(2) = 173.29.
[[/math]]