Revision as of 13:24, 2 May 2023 by Admin (Created page with "'''Solution: D''' Let <math>T</math> denote printer lifetime. Then <math>f(t) =\frac{1}{2} e^{–t/2}, 0 ≤ t ≤ \infty </math>. Note that <math display = "block"> \begin...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 02'23

Answer

Solution: D

Let [math]T[/math] denote printer lifetime. Then [math]f(t) =\frac{1}{2} e^{–t/2}, 0 ≤ t ≤ \infty [/math]. Note that

[[math]] \begin{align*} P[T \leq 1] = \int_0^1 \frac{1}{2} e^{-t/2} dt = e^{-t/2} \Big |_0^1 = 1 - e^{-1/2} = 0.393. \\ P[1 ≤ T ≤ 2] = \int_1^2 \frac{1}{2} e^{-t/2} dt = e^{-t/2} \Big |_1^2 = e^{-1/2} - e^{-1} = 0.239. \end{align*} [[/math]]

Next, denote refunds for the 100 printers sold by independent and identically distributed random variables [math]Y_1, . . . , Y_{100}[/math] where

[[math]] Y_i = \begin{cases} 200 \quad \textrm{with probability } 0.393 \\ 100 \quad \textrm{with probability } 0.239 \\ 0 \quad \textrm{with probability } 0.368 \, \end{cases} [[/math]]

Now [math]\operatorname{E}[Y_i] = 200(0.393) + 100(0.239) = 102.56 [/math]. Therefore the expected refunds equals

[[math]] \sum_{i=1}^{100} \operatorname{E}[Y_i] = 100(102.56) = 10,256. [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00