Revision as of 13:24, 2 May 2023 by Admin (Created page with "'''Solution: D''' Let <math>T</math> denote printer lifetime. Then <math>f(t) =\frac{1}{2} e^{–t/2}, 0 ≤ t ≤ \infty </math>. Note that <math display = "block"> \begin...")
Exercise
ABy Admin
May 02'23
Answer
Solution: D
Let [math]T[/math] denote printer lifetime. Then [math]f(t) =\frac{1}{2} e^{–t/2}, 0 ≤ t ≤ \infty [/math]. Note that
[[math]]
\begin{align*}
P[T \leq 1] = \int_0^1 \frac{1}{2} e^{-t/2} dt = e^{-t/2} \Big |_0^1 = 1 - e^{-1/2} = 0.393. \\
P[1 ≤ T ≤ 2] = \int_1^2 \frac{1}{2} e^{-t/2} dt = e^{-t/2} \Big |_1^2 = e^{-1/2} - e^{-1} = 0.239.
\end{align*}
[[/math]]
Next, denote refunds for the 100 printers sold by independent and identically distributed random variables [math]Y_1, . . . , Y_{100}[/math] where
[[math]]
Y_i = \begin{cases}
200 \quad \textrm{with probability } 0.393 \\
100 \quad \textrm{with probability } 0.239 \\
0 \quad \textrm{with probability } 0.368 \,
\end{cases}
[[/math]]
Now [math]\operatorname{E}[Y_i] = 200(0.393) + 100(0.239) = 102.56 [/math]. Therefore the expected refunds equals
[[math]]
\sum_{i=1}^{100} \operatorname{E}[Y_i] = 100(102.56) = 10,256.
[[/math]]