Revision as of 20:06, 2 May 2023 by Admin (Created page with "'''Solution: D''' Using the law of total probability, the requested probability is <math display = "block"> \sum_{k=0}^{\infty} \operatorname{P}(k + 0.75 < X ≤ k + 1| k <...")
Exercise
ABy Admin
May 02'23
Answer
Solution: D
Using the law of total probability, the requested probability is
[[math]]
\sum_{k=0}^{\infty} \operatorname{P}(k + 0.75 \lt X ≤ k + 1| k \lt X ≤ k + 1)\operatorname{P}(k \lt X ≤ k + 1) .
[[/math]]
The first probability is
[[math]]
\begin{align*}
\operatorname{P}(k + 0.75 \lt X ≤ k + 1 | k \lt X ≤ k + 1) &= \frac{\operatorname{P}(k + 0.75 \lt X ≤ k + 1)}{\operatorname{P}(k \lt X ≤ k + 1)} \\
&= \frac{F(k + 1) − F (k + 0.75)}{F (k + 1) − F (k)} \\
&= \frac{1 − e^{-( k +1)/2} − 1 + e^{-(k + 0.75)/2}}{1 − e^{−( k +1)/2} − 1 + e^{− k /2}} \\
&= \frac{e^{−0.375} − e^{−0.5}}{1-e^{-0.5}} \\
&= 0.205
\end{align*}
[[/math]]
This probability factors out of the sum and the remaining probabilities sum to 1 so the requested probability is 0.205.