Revision as of 21:52, 2 May 2023 by Admin (Created page with "'''Solution: E''' Without the deductible, the standard deviation is, from the uniform distribution, <math>b/\sqrt{12} = 0.28868b.</math> Let <math>Y</math> be the random vari...")
Exercise
ABy Admin
May 02'23
Answer
Solution: E
Without the deductible, the standard deviation is, from the uniform distribution, [math]b/\sqrt{12} = 0.28868b.[/math] Let [math]Y[/math] be the random variable representing the payout with the deductible.
[[math]]
\begin{align*}
\operatorname{E}(Y) &= \int_{0.1b}^b (y-0.1b) \frac{1}{b} dy = \frac{y^2}{2b} - 0.1y \Big |_{0.1b}^b = 0.5b - 0.1b - 0.005b + 0.01b = 0.405b \\
\operatorname{E}(Y^2) &= \int_{0.1b}^b (y-0.1b)^2 \frac{1}{b} dy = \frac{y^3}{3b} -0.1y^2 + 0.1by \Big |_{0.1b}^b = 0.5b - 0.1b - 0.005b + 0.01b = 0.405b \\
&=\frac{b^3}{3} - 0.1b^2 + 0.01b^2 -0.001b^2/3 + 0.001b^2 - 0.001b^2 = 0.243b^2 \\
\operatorname{Var}(Y) &= 0.243b^2 - (0.405b)^2 = 0.078975b^2 \\
\operatorname{SD}(Y) &= 0.28102b.
\end{align*}
[[/math]]
The ratio is 0.28102/0.28868 = 0.97347.