Revision as of 22:39, 2 May 2023 by Admin
Exercise
ABy Admin
May 02'23
Answer
Solution: D
The cumulative distribution function for the exponential distribution is
[[math]]
F(x) = 1-e^{-\lambda x} = 1-e^{-x/\mu} = 1-e^{-x/100}, x \gt 0.
[[/math]]
From the given probability data,
[[math]]
\begin{align*}
F(50) - F(40) &= F(r) - F(60) \\
1-e^{-50/100} - (1-e^{-40/100}) &= 1-e^{-r/100} - (1-e^{-60/100}) \\
e^{-40/100} - e^{-50/100} &= e^{-60/100} - e^{-r/100} \\
e^{-r/100} &= e^{-60/100} - e^{-40/100} + e^{-50/100} = 0.4850 \\
-r/100 &= \ln(0.4850) = -0.7236 \\
r &= 72.36.
\end{align*}
[[/math]]